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WEFIRST Microlensing Survey.

To Micron All Sky Survey Image Mosaic: Infrared Processing and Analyss Center/Caltech & University of Massachuseus

3 2 1 0 - -2 -3
¢ (deg)

— AN ) :
M = 0.05TMg a =219 AU M, =0.36 Ko™ =775 "

18.6 : . . . . . .

18.8 .~ . A
18.8 -
1 g
i5 18.82 o .

° i
E ¢
‘2 199t 18.84 4
=0}
< ‘ '
g
o 194 18.86
<
=

19.6 18.88 . \

328 328.25 328.5 |
19.8
ammmmmmme
20 : : : : : :
0 50 100 150 200 250 300 350
Time (days)




Microlensing Survey Dataset.

Properties.

~3 sq. deg.

~432 days.

~80% of the area will have 2 million seconds of integration
time.

~100 million stars down to J<22, with ~40,000
measurements per star (~10% in bluer filter), N-¥/2=1/200

~20 billion photons detected for a J=20 star.

Deepest IR image ever?



Extraordinarily rich dataset.

Measure parallaxes to <10% and proper motions to <300
m/s (<0.3%) for 102 bulge and disk stars.

— Larger than GAIA.
Detect dark companions to disk and bulge stars.
Find >10° transiting planets (Bennett & Rhie 2002).

Detect 5000 KBOs down to 10km, with 1% uncertainties on
the orbital parameters (Gould 2014).

Exquisite characterization of the detector.
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Microlensing Basics.




Angular Einstein Ring.
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Rings vs. Images.




I\/Iicrolensing Events.
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Detecting Planets.
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Basic Measurements.

Primary Event:
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All events:

Ug

Angular Einstein
Ring Radius

=f(Ml D/)

lp G, S

Tie

Microlens Parallax

=f(Ml D/)

combine any two

M, D,

timescale, mass ratio,
dimensionless projected
separation

F

Lens Flux

=f(Ml D/)

m=qM, r ., = SU:D,

erp




Angular Einstein Ring Radius.

 Need an angular ruler.

— Finite size of source star

— 6, from source flux + color
— Most planetary events.

— Need measurements in two
filters during the event.
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Lens Flux.

e Need to measure the lens

flux.

Have to resolve out unrelated
stars blended with lens and

source.

Subtract source flux from sum of

lens+source.

Remaining flux is due to the lens.

Need angular resolution better
than ~0.3".
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Microlens Parallax.

Use the Earth’s orbit as a ruler.

Microlens parallax is a vector.

Direction of relative lens-source

proper motion.

Measure deviations from a

Magpnification

rectilinear, uniform trajectory.

Parallax asymmetry gives one

component.

Precise lightcurves for most events
give one component of parallax.
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Other possible measurements.

Additional parallax measurements.

Directly measuring relative lens-source proper
motion.

Astrometric microlensing.

Orbital motion.



Parallax, continued.

Long timescale events.
— Both components.

Geosynchronous parallax (Gould
2013)

— High magnification events.

L2-Earth parallax (Yee 2013).

— JWST+WEFIRST Geo, or Earth
+WFIRST L2

— Both components.

— High-magnification events.

— Requires alerts or dedicated
surveys.
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Directly measuring u,.,.

For luminous lenses:

 Direct resolution of lens and source.
— High p,, events.

— Precursor observations now!
* Image elongation.
* Color-dependent centroid shift.
Useful for:

* Testing for companions to lens or
source.

* Events where the finite source size is not
measured.




Astrometric microlensing.

Centroid shift of source.
— Size is proportional to 6;

— Orientation is in the direction of
and i,

— Combined with parallax asymmetry,
get complete solution.

Can be used to measure masses of
isolated remnants and brown
dwarfs.

Very small shift.
— Worry about systematics.

— Can be vetted using direct
measurement of p ., from precursor
observations.
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Summary.

For planetary deviations with luminous lenses, will get (model dependent)
masses.

— Need two filters during the event.

— Need high resolution.
For planetary deviations with non-luminous lenses, will get partial
information.

— Need two filters during the event.

— Need precise light curves.

There are a variety of additional measurements we can make for a subset
of events.

— Additional information (orbits).

— Redundancy to check solutions.

— Strict control of systematics (photometry + astrometry).

— ToO and/or Alerts.

— Precursor observations.



Implications?

Potentially very rich dataset, for microlensing and non-microlensing
science, as well as for calibration of the detector.

In order to extract the maximum amount of science from this dataset, we
need to:

— Think about what else can be done with this dataset.
— Understand how and how well it can be used to calibrate the detector.

— Figure out what additional measurements we might need to make
now to maximally leverage this dataset for these purposes.



HST Precursor Survey.

* With HST imaging of (a subset of?) the WFIRST fields in several bluer
filters:

— Can measure metallicities, ages, distances, and foreground extinction
for all the bulge and disk stars that will have WFIRST parallaxes and
proper motions.

— Can test proper motion and astrometric microlensing measurements
by resolving the lenses and sources of future microlensing events.

— Can identify and map out unusual stellar populations (blue stragglers,
etc.)

— Can identify the locations and colors of all of the stars in the
microlensing fields with higher resolution and fidelity than WFIRST or
Euclid.



